Soil physical properties and site details

Part of experiment rbk1

Broadbalk site and soil physical properties

The Broadbalk wheat experiment, established in the autumn of 1843, has been cultivated since at least 1623, and probably much earlier (Avery & Bullock, 1969). In his first Rothamsted paper, published in 1847, Lawes described the soil as "a heavy loam resting upon chalk, capable of producing good wheat when well manured" . Here, details are given of the site, the soil description and standard soil weights.

Site details

Plot area

When the experiment was established in 1843 most of the plots were very large. Most comprised an ‘a’ and ‘b’ half (each 3.77m wide) and were 320m long (the length of the field). Plots 21 and 22 are a little narrower. In 1894 the two halves were combined, giving a total plot area of 0.24ha. As the experiment progressed these large plots have been subdivided into different Sections (see Plans and treatments for more details), with corresponding changes in the area harvested. The current plot lengths vary depending on the Section and are between 15.24m (Section 0) and 28.04m (Section 1). The plots are now 6m wide (except plots 21 and 22 which are 4m wide) with 48 rows at 12.5 cm spacing. The harvested area is 2.1m wide. The harvested area is shown in most of the datasets.

Soil moisture and drainage

Soil Moisture Characteristics: With nearly 200 plots in the experiment, there isn't water retention information for all treatments. Water retention characteristics for contrasting plots can be found in Salter & Williams (1969). For more recent information, see Gregory et al, 2010, where retention characteristics have been fitted to the van Genuchten model.

Soil Drainage: Lawes described the soil of Broadbalk as having good natural drainage. However, as it was an experimental field, it was decided to improve the drainage, to allow greater access. Tile drains were installed under each strip in autumn 1849 (except plot 20). They were installed in the centre of the strip, under the furrow separating the 'a' and 'b' halves (see Plan 1852-1925). Tiles drains were installed under strip 2.1 (2A) in autumn 1884 before the first application of FYM. Tile drains were 5cm in diameter and 60-76 cm deep, and they discharged into a 10cm diameter main drain at the east side of the field.

Lawes and Gilbert realised that the drains could be used to measure losses of plant nutrients from the different fertilizer treatments. Small outlet pits were dug at the intersection of each strip drain and the main drain in December 1866 to sample the water draining from strips 2 to 16. This was not ideal, as there was the risk of the samples being contaminated. The drains from strips 17-19 were opened in November 1878. In spring 1879 the collection of drainage water was improved, with the drains from each strip discharging into their own pit, which overflowed into a separate, deepened main drain which was kept open. In 1897/98 this main drainage ditch was enlarged, the base concreted and the sides bricked. (Details from Johnston & Garner, 1969).

1623 map
Map of 1623 showing field which became the Broadbalk experiment under arable cultivation

Broadbalk harvest
Broadbalk spreading chalk in 1954, Section V

Broadbalk sampling
Broadbalk 1935, tractor plough

Soil description

For more details of the Batcombe and other soil series, see Cranfield University 2018 Soils Guide.

Soil texture class: Clay loam to silty clay loam over clay-with flints. The soils contain a large number of flints and are slightly calcareous. Below about 2m depth the soil becomes chalk. The experiment is under-drained and the site is free draining.

Soil texture, 0-23cm (from Gregory et al, 2010)

There is considerable variation in soil texture across the site, with clay contents ranging from 19 - 39% (Watts et al, 2006). The mean clay content for Sections 0 (straw incorporated since 1986) and 1 (straw removed, both continuous wheat) is 28.3% (Watts et al, 2006). Clay content increases with soil depth in the Batcombe Series (from Jenkinson et al, 2008):

Soil pH: The plough layer (0-23 m) is limed when necessary to maintain a minimum soil pH of 7.0 - 7.5. Broadbalk was first limed regularly from 1955-1967, with plots given the larger inputs of ammonium fertilizers receiving more lime than the controls. Liming stopped from 1968-1975, but began again in 1976-1992, with 3 or 4 sections being limed each year, with 2.9t/ha of chalk being applied each autumn to all plots of each section. From 2007 onward selected plots have been limed every 5-6 years based on soil pH measurements to maintain top-soil pH around 7.0-7.5. Selected plots were limed in autumn 2018.

Soil weights, Mkg/ha

The following standard soil weights should be used for Broadbalk soil, both continuous wheat and rotational sections. All weights are in 106 kg/ha of oven-dry fine soil. To convert to g/cm3 divide by depth in cm (eg 23) and multiply by 10. Data prepared by A J Macdonald and P R Poulton, February 2014.

Broadbalk standard soil weights 106 kg/ha, 0-23cm

Year Inorganic a
Plots 03-20
FYM since 1844 b
Plot 2.2 (2B)
FYM since 1885 b
Plot 2.1 (2A)
FYM 1968-2000 c
Plot 01
1843
1865
1881
1884
1893
1914
1967
2000
2010
(2.88)
2.88
2.88
2.88
2.88
2.88
*
2.88
2.88
(2.88)
2.78
2.69
*
2.62
2.60
*
2.52
2.52
*
*
*
(2.88)
2.81
2.75
*
2.52
2.52
*
*
*
*
*
*
(2.88)
2.52
(2.63)

Broadbalk standard soil weights 106 kg/ha, 23-46cm

Year Plots 03-20 Plot 2.2 (2B) Plot 2.1 (2A) Plot 01
All years
3.0
3.0
3.0
3.0

Broadbalk standard soil weights 106 kg/ha, 46-69cm and 69-91cm

Year Plots 03-20 Plot 2.2 (2B) Plot 2.1 (2A) Plot 01
All years
3.1
3.1
3.1
3.1

Topsoil data is the mean of comprehensive measurements of soil weight made in 1865, 1881, 1893, 1914 and 2000. Figures in brackets are assumed. * indicates no samples taken. 23-46cm is the mean of all plots measured in 1865, 1881, 1893 and 1914. 46-69cm and 69-91cm is the mean of all plots measured in 1865, 1881 and 1893. See Dyer, 1902 for 1865, 1881 and 1893 data. See Watts et al, 2006 for 2000 data. 1914 data is previously unpublished.

Notes:

a Plots 03-20, receiving inorganic fertilizer only, no manure (FYM). This also includes plot 03, given no fertilizer, and plot 19, recieving rape cake/castor meal.

b Assume no further change in bulk density/soil weight on plots 2.1 and 2.2 after 2000. However, BD may increase slightly on plots in rotation as FYM is NOT applied to the oats.

c BD will increase on plot 01 as applications of FYM stopped in 2000.The increase is assumed to be at the same rate as the decrease in BD between 1968-2000.

For deeper soil layers, use the following weights, taken from Dyer, 1902:

Depth
cm
Plots Soil weight, 106 kg/ha Soil weight, g/cm3
91-114
114-137
137-160
160-183
183-206
206-229
All plots
All plots
All plots
All plots
All plots
All plots
3.21
3.18
3.20
3.22
3.37
3.37
1.40
1.38
1.39
1.40
1.47
1.47

Acknowledgements

With thanks to Andy Macdonald and Paul Poulton for help with compiling the information and text.

Key References

2021

  • Thomas, C.L. , Hernandez-Allica, J. , Dunham, S.J. , McGrath, S.P. and Haefele, S.M.(2021) "A comparison of soil texture measurements using mid-infrared spectroscopy (MIRS) and laser diffraction analysis (LDA) in diverse soils", Scientific Reports, 11, 16
    DOI: 10.1038/s41598-020-79618-y
  • Suravi, K.N. , Attenborough, K. , Taherzadeh, S. , Macdonald, A.J. , Powlson, D.S. , Ashton, R.W. and Whalley, W.R.(2021) "The effect of organic carbon content on soil compression characteristics", Soil and Tillage research, 209, 104975
    DOI: 10.1016/j.still.2021.104975

2020

  • Jensen, J.L. , Schjonning, P. , Watts, C.W. , Christensen, B.T. , Obour, P.B. and Munkholm, L.J.(2020) "Soil degradation and recovery - Changes in organic matter fractions and structural stability", Geoderma, 364
    DOI: 10.1016/j.geoderma.2020.114181
  • Redmile-Gordon, M. , Gregory, A.S. , White, R.P. and Watts, C.W.(2020) "Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land use", Geoderma, 363
    DOI: 10.1016/j.geoderma.2019.114143

2012

  • Powlson, D.S. , Bhogal, A. , Chambers, B.J. , Coleman, K. , Macdonald, A.J. , Goulding, K.W.T. and Whitmore, A.P.(2012) "The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study.", Agriculture, Ecosystems & Environment, 146, 23-33
    DOI: 10.1016/j.agee.2011.10.004

2010

  • Gregory, A.S. , Bird, N.R.A. , Whalley, W.R. , Matthews, G.P. and Young, I.M.(2010) "Deformation and Shrinkage Effects on the Soil Water Release Characteristic", Soil Science Society of America Journal, 74, 1104-1112
    DOI: 10.2136/sssaj2009.0278

2009

  • Gregory, A.S. , Watts, C.W. , Griffiths, B.S. , Hallett, P.D. , Kuan, H.L. and Whitmore, A.P.(2009) "The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England", Geoderma, 153, 172-185
    DOI: 10.1016/j.geoderma.2009.08.002

2008

  • Jenkinson, D.S. , Poulton, P.R. and Bryant, C.(2008) "The turnover of organic carbon in subsoils. Part 1. Natural and bomb radiocarbon in soil profiles from the Rothamsted long-term field experiments", European Journal of Soil Science, 59, 391-399
    DOI: 10.1111/j.1365-2389.2008.01025.x

2006

  • Watts, C.W. , Clark, L.J. , Poulton, P.R. , Powlson, D.S. and Whitmore, A.P.(2006) "The role of clay, organic carbon and long-term management on mouldboard plough draught measured on the Broadbalk wheat experiment at Rothamsted", Soil Use and Management, 22, 334-341
    DOI: 10.1111/j.1475-2743.2006.00054.x

2003

  • Blake, L. , Johnston, A.E. , Poulton, P.R. and Goulding, K.W.T.(2003) "Changes in soil phosphorus fractions following positive and negative phosphorus balances for long periods.", Plant and Soil, 254, 245-261
    DOI: 10.1023/A:1025544817872

2000

  • Goulding, K.W.T. , Poulton, P.R. , Webster, C.P. and Howe, M.T.(2000) "Nitrate leaching from the Broadbalk Wheat Experiment, Rothamsted, UK, as influenced by fertilizer and manure inputs and the weather", Soil Use and Management, 16, 244-250
    DOI: 10.1111/j.1475-2743.2000.tb00203.x
  • Blake, L. , Mercik, S. , Koerschens, M. , Moskal, S. , Poulton, P.R. , Goulding, K.W.T. , Weigel, A. , Powlson, D.S. , Falloon, P.D. and Smith, P.(2000) "Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Modelling refractory soil organic matter", Nutrient Cycling in Agroecosystems, 56, 263-275
    DOI: 10.1023/A:1009841603931

1999

  • Blake, L. , Mercik, S. , Koerschens, M. , Goulding, K.W.T. , Stempen, S. , Weigel, A. , Poulton, P.R. and Powlson, D.S.(1999) "Potassium content in soil, uptake in plants and the potassium balance in three European long-term field experiments", Plant and Soil, 216, 1-14
    DOI: 10.1023/a:1004730023746

1995

1980

  • Avery, B.W.(1980) "Soil classification for England and Wales (higher categories). ", ,

1972

  • Bolton, J.(1972) "Changes in magnesium and calcium in soils of the Broadbalk wheat experiment at Rothamsted from 1865 to 1966", Journal of Agricultural Science, 79, 217-223
    DOI: 10.1017/S0021859600032184

1969

1902

We only use analytics cookies on this site. Please refer to our Privacy and cookies policy

For further information and assistance, please contact the e-RA curators, Sarah Perryman and Margaret Glendining using the e-RA email address: era@rothamsted.ac.uk